Quantitative estimates and asymptotics for fractional Allen-Cahn equation

发布者:文明办发布时间:2026-01-06浏览次数:10

主讲人:王克磊 武汉大学教授


时间:2026年1月6日16:00


地点:徐汇校区三号楼301室


举办单位:数理学院


主讲人介绍:王克磊,武汉大学数学与统计学院教授, ICCM 数学银奖、ICCM 若琳奖、中国数学会钟家庆奖。
研究方向为非线性偏微分方程、变分法和几何测度论,在 Allen-Cahn 方程、超临界集中现象、DeGiorgi 猜想以及非线性椭圆方程的稳定解和有限 Morse 指标解的分类等问题上做出一系列突出贡献。
在 Bubbling/blow up (Crelle、Poincare、JFA) ;反应扩散方程与行波解 (ARMA、MA.、JMPA);Allen-Cahn 方程 (CPAM、JEMS、Crelle、Poincare、CPDE、ARMA、AiM、JMPA、TAMS);有限 Morse 指标 (AiM、MA、CVPDE);竞争系统 (CPDE、Poincare、AiM、MA、TAMS、JFA) 等高水平期刊发表论文 50 篇。


内容介绍:It is known that the singular limits of Allen-Cahn equations with fractional Laplacian $(-\Delta)^s$ ($0 < s < 1/2$) are nonlocal minimal hypersurfaces (introduced by Caffarelli-Roquejoffre-Savin in [Comm. Pure Appl. Math. 2010]). For energy minimizers, this correspondence was established by Savin and Valdinochi via the $\Gamma$-convergence method.
In this talk, we discuss the case of general critical points. By using the quantitative stratification theory developed by Cheeger-Naber and Naber-Valtorta, we derive precise estimates for transition layers in fractional Allen-Cahn equations. These estimates imply that general critical points converge to nonlocal minimal hypersurfaces, which is substantially better than the convergence behavior observed in classical Allen-Cahn equations.
The talk is based on two joint works with Vincent Millot and Yannick Sire, Juncheng Wei and Ke Wu.

热点新闻
最新要闻